68 Raje, Olson, Bryant, Burt and Auguston

Chapter IV

UniFrame;

A Unified Framework
for Developing
Service-Oriented,
Component-Based
Distributed Software Systems

Rajeev R. Raje, Indiana University Purdue University, USA
Andrew M. Olson, Indiana University Purdue University, USA
Barrett R. Bryant, University of Alabama at Birmingham, USA

Carol C. Burt, University of Alabama at Birmingham, USA

Makhail Auguston, Naval Postgraduate School, USA

Abstract

This chapter introduces the UniFrame approach to creating high quality computing
systems from heter ogeneous components distributed over a network. It describes how
this approach employs a unifying framework for specifying such systems to unite the
concepts of service-oriented architectures, a component-based software engineering
methodology and a mechanism for automatically finding components on a network in
order to assemble a specified system. UniFrame employs a formal specification
language to define the components and serve as a basis for generating glue/wrapper
code that connects heter ogeneous components. It also provides a high level language
for the system developer to use for inserting code in a created system to validate it

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2005 2. REPORT TYPE 00-00-2005 to 00-00-2005
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Uniframe: A Unified Framework for Developing Service-Oriented, £b. GRANT NUMBER

Component-Based Distributed Softwar e Systems
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School ,Department of Computer REPORT NUMBER
Science,Monterey,CA,93943

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Service-Oriented Softwar e System Engineering: Challenges and Practices (Chapter |V, pp. 68-87).
Hershey,PA: Idea Group Publishing

14. ABSTRACT
seereport
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 20
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

UniFrame 69

empirically and estimate the quality of service it supports. The chapter demonstrates
how a comprehensive approach, which involves the practicing community as well as
technical experts, canlead to solutions of many of thedifficultiesinherent in constructing
distributed computing systems.

| ntroduction

The architecture of acomputing system family can be represented by a business model
comprising a set of standard, platform independent modelsresiding in aservice layer,
each of which isrelated to a platform specific model that corresponds to one or more
specific realizations of the service. A system isrealized by assembling the realizations
accordingtothespecified architecture. This Service-Oriented Architecture offersmany
advantages, such as flexibility, in constructing and modifying a computing system.
Because business requirements can change rapidly, both the services making up a
business model and their platform specific realizations may need to change rapidly in
response. With an agile mechanism to trace out an appropriate architecture, the devel-
opment engineer can react quickly by building a modified realization of the system.
Neverthel ess, there are many practical issuesthat make effecting this processdifficult.
For example, an environment in which this approach has greatest appeal is typically
distributed and heterogeneous. Thismakesthe mapping of asystem’ splatformindepen-
dent model to aplatform specific model (Object Management Group, 2002) quite complex
and subject to variation.

This chapter describes the basic principles of the UniFrame Project, which defines a
process, based on Service-Oriented Architecture, for rapidly constructing adistributed
computing system that confronts many of these inherent difficulties. UniFrame’sbasic
objectiveisto createaunified framework tofacilitatetheinteroperation of heterogeneous
distributed components as well as the construction of high quality computing systems
based on them. UniFrame combines the principles of distributed, component-based
computing, Model-Driven Architecture, service and quality of service guarantees, and
generative techniques.

Though better than handcrafting distributed computing systems, developing them by
composing existing components still poses many challenges. A comprehensive treat-
ment of these and the corresponding solutions that UniFrame proposes exceeds the
scope of thischapter, soit sketchesthe features of UniFramethat are most related to the
book’ s service-oriented engineering theme along with references to further reading.

Background

Despite the achievements in software engineering, devel opment of large-scale, decen-
tralized systems still poses major issues. Recent experience has demonstrated that the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

70 Raje, Olson, Bryant, Burt and Auguston

principles of distributed, component-based engineering are effective in dealing with
them. Weck (1997), Lumpe, Schneider, Nierstrasz, and Achermann (1997), and theworks
of Batory et al., for example, Batory and Geraci (1997), concern the composition of
components. Theapproach of Griss(2001) to devel oping software product linesissimilar
toUniFrame’s, except that UniFrameavoidsdescending to code-fragment-sized compo-
nents. Brown (1999) surveyscomponent-based system devel opment, whereas Heineman
and Councill (2001) and Szyperski, Gruntz, and Murer (2002) provide extensivediscus-
sions of different aspects.

Heinemanand Councill (2001) provideageneral definition of acomponent model. Many
different modelsfor distributed, component-based computing have been proposed and
implemented. Among these, 2EE™ (Java 2 Enterprise Edition) and its associated
distributed computing model (Java-RM1), CORBA® (Common Object Request Broker
Architecture), and .NET® have achieved the greatest acceptance. Typically, each
prevalent model assumes the presence of homogeneous environments; that is, compo-
nentscreated using aparticular model assumethat any other componentspresent adhere
to the same model. For example, the white paper on Java Remote Method Invocation
(2003) describes RMI as an extension of Java's basic model to achieve distributed
computation, assuming, thus, an environment consisting of components developed
using Java and communicating with each other using method calls. Schmidt (2003)
provides an overview of CORBA, which indicates that CORBA does provide alimited
independencefromthecomponents’ devel opment language and deployment platform by
specifying componentswith aninterface definitionlanguage. Thispermitsimplementa-
tion in any languages for which mappings with the interface definition language exist.
Again, animplicitassumptionisthat, typically,aCORBA component will communicate
withanother CORBA component. Microsoft’s.NET isintended asaprogramming model
for building XML ™-bhased Web services and associated applications. It provides
language independence with an interface language and a common language runtime
(Microsoft .NET Framework, 2003). Theimplicit assumption of homogeneity still holds.

UniFrame

Current approachesfor tackling heterogeneity aread hocin nature, requiring handcrafted
softwarebridges so havemany drawbacks. Itisdifficultto make componentsof different
models interoperate, and handcrafting is known to be error prone. Moreover, depen-
denceon asinglemodel meshespoorly with thegrand notion of acomponent (or services)
bazaar over a distributed infrastructure, as the success of such a bazaar requires local
autonomy for deciding various policies, including the choice of the underlying model.
Thus, there is a need for a framework, such as UniFrame, that will support seamless
interoperation of heterogeneous, distributed components. UniFrame consists of:

i the creation of a standards-based meta-model for components and associated
hierarchical setup for indicating the contracts and constraints of the components;

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

UniFrame 71

i an automatic generation of glue and wrappers for achieving interoperability;
i guidelines for specifying and verifying the quality of individual components;

i a mechanism for automatically discovering appropriate components on a net-
work;

i a methodology for developing distributed, component-based systems with ser-
vice-oriented architectures; and

i mechanisms for evaluating the quality of the resulting component assem-
blages.

UniFrame createsmore general distributed systemsthan the point-to-point interactions
of current Web services and al so emphasi zes determining the Quality of Service (QoS)
during system assembly. For pragmatic reasons, UniFrame providesan iterative, incre-
mental process for assembling a distributed computing system (DCS) from services
available on the network that permit selecting among alternative components during
system construction. In order to increase the assurance of a DCS, UniFrame employs
automation, to the extent feasible, in the processes of |ocating and assembling compo-
nents, and of component and system integration testing. The |CSE 6th Workshop on
Component-Based Software Engineering: Automated Reasoning and Prediction (Crnkovic,
Schmidt, Stafford & Wallnau, 2003) focused on automated composition theories in
constructingaDCS. Although automationisagoal of UniFrame, it presently focuseson
the more practical, implementation aspects.

Unified Meta-Component Model (UMM)

Because future service-oriented systems will consist of independently developed
components adhering to various models, a meta-model that abstracts the features of
different models, enhances them and incorporates innovative concepts, isnecessary in
order tofacilitatetheir creation. Raje (2000) and Raje, Auguston, Bryant, Olson, and Burt
(2001) describeacentral concept of UniFrame, the Unified M eta-component Model, that
doesthis. It consists of three parts: (a) components, (b) service and its guarantees, and
(c) infrastructure. These are not novel separately, but their structure, integration, and
interactions form the UMM ' s distinguishing features. Components in the UMM have
public interfaces and private implementations, which may be heterogeneous. Each
interface comprisesmultiplelevels. Inadditionto emphasizing acomponent’ sfunctional
responsibilities (or the servicesit offers), the UMM requires component developersto
advertise and guarantee a QoS rating for each component. The UMM’ s infrastructure
supplies the environment necessary for developing, deploying, publishing, locating,
assembling, and validating individual components and systems of components. The
following subsections expand upon these concepts.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

72 Raje, Olson, Bryant, Burt and Auguston

Component

The UMM defines a component as a sextuple consisting of the attributes (inherent,
functional, nonfunctional, cooperative, auxiliary, deployment). Thisview of acompo-
nent conforms to the definition of Szyperski, Gruntz, and Murer (2002). The inherent
attributes contain the bookkeeping information about acomponent, such as the author,
theversion, anditsvalidity period. Thefunctional attributes of acomponent containits
interface, along with the necessary pre- and post-conditions, and component model of
any associated implementation. They also indicate related details, such as algorithms
used, underlying design patterns and technology, and known usages. The nonfunc-
tional attributes represent the QoS parameters supported by the component, along with
their valuesthat the component devel oper guaranteesin aspecific deployment environ-
ment. These attributes may al so indicate the effects of the deployment environment and
usage patterns on the QoS values. The cooperative attributes describe how components
actively collaborate, exchanging services. Theauxiliary attributesexhibit other charac-
teristics, such as mobility, various security features, and fault tolerance that the
components may possess. A component needs deployment rules, specified in the
deployment attributes so that it can be configured, initialized, and made available on a
network.

Service

Asdescribed by Raje (2000), this part of the UMM consists of the computational tasks
and guaranteesthat acomponent performs. TorealizeaDCSfromaset of independently
created components, the system integrator needs to reason from the service assurance
of each component to obtain the assurance of theintegrated DCS. Hence, acomponent
must provideapredetermined level of assurance of bothitsfunctional and nonfunctional
features. Various techniques, such as formal verification, have been proposed for
reasoning about the functional assurance of a DCS. Therefore, the UMM assumes the
use of an appropriate mechanism for functional assurance. The UniFrame research
focuses on assuring the nonfunctional features of components and the integrated
system because many existing application domains (multimedia, critical systems, and so
forth) depend not only on correct functionality but also on how well it is achieved.
UniFrame provides a mechanism for the component provider to specify the QoS
parameters that are applicable to a provided component and determine the ranges that
the component can guarantee.

Table 1 shows the UMM type specification of a component, Validation Server, for
validating user accesseswithinthe application domain of document management. Inthe
advertised description of a corresponding implementation, the component provider
would supply theactual valuesfor variousfields (suchasN/A in Table 1). For example,
the specification of a component that implements Validation Server would contain
details, such asthe URL where the component is deployed (id), the guaranteed values
for thethroughput and end-to-end del ay, and therequired depl oyment environment. The

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

UniFrame 73

Table 1. UMM type specification of a component

Abstract Component Type: ValidationServer

1. Component Name: ValidationServer
2. Domain Name: Document Management
3. System Name: DocumentM anager
4. Informal Description: Provide the user validation service.
5. Computational Attributes:
5.1 Inherent Attributes:
51.1id: N/A
5.1.2 Version: version 1.0
5.1.3 Author: N/A
5.1.4 Date: N/A
5.1.5 Validity: N/A
5.1.6 Atomicity: Yes
5.1.7 Registration: N/A
5.1.8 Model: N/A
5.2 Functional Attributes:
5.2.1 Function description: Act as validation server for usersin the system.
5.2.2 Algorithm: N/A
5.2.3 Complexity: N/A
5.2.4 Syntactic Contract
5.2.4.1 Provided Interface: | Validation
5.2.4.2 Required Interface: NONE
5.2.5 Technology: N/A
5.2.6 Expected Resources. N/A
5.2.7 Design Patterns: NONE
5.2.8 Known Usage: Validation of user access
5.2.9 Alias: NONE
6. Cooperation Attributes:
6.1 Preprocessing Collaborators: Users Terminal
6.2 Postprocessing Collaborators: NONE
7. Auxiliary Attributes:
7.1 Mobility: No
7.2 Security: LO
7.3 Fault tolerance: LO
8. Quality of Service Attributes
8.1 QoS Metrics: throughput, end-to-end delay
8.2 QoS Level: N/A
8.3 Cost: N/A
8.4 Quality Level: N/A
8.5 Effect of Environment: N/A
8.6 Effect of Usage Pattern: N/A
9. Deployment Attributes: N/A

specification associated with each implemented component is published when it is
deployed onthe network. The UMM specification of acomponent enhancesthe concept
of amultilevel contract for components proposed by Beugnard, Jezequel, Plouzeau, and
Watkins (1999) because it includes other details, such as bookkeeping, collaborative,
algorithmic and technological information, and possible levels of service with asso-
ciated costs and effects of different environmental factors on the QoS parameters.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

74 Raje, Olson, Bryant, Burt and Auguston

Infrastructure

UniFrame assumes the presence of a publicly accepted knowledgebase that contains
information, such asthe component types needed for a specific application domain, the
interconnections and constraints that make up the design specification of each compo-
nent system in a domain, and rules for QoS calculations. Experts, such as standards
organizations' task forces, create the UMM specifications for the components of each
application domain of the knowledgebase. The UMM specifications of the component
types are publicly distributed so that component developers can supply implementa-
tions that adhere to them.

UniFrame’ sInfrastructure consistsof the System Generation Process, Resource Discov-
ery Service (URDS), and Glue and Wrapper Generator. The first employs the
knowledgebase to carry out the steps in creating a component system. It invokes the
URDS to locate the components in the network the system requires and validates the
product using an iterative process. The URDS provides mechanismsfor componentsto
publishtheir UMM specifications and for hosting the services on distributed machines,
receives appropriate queries for locating the deployed services, and performs the
sel ection of necessary componentsbased upon specified criteria. It invokesthe Glueand
Wrapper Generator, which accommodates the heterogeneity across components, incor-
porates the mechanisms necessary to measure the QoS, and configures the selected
services. Subsequent sections will provide more details about these.

Service-Oriented Architecture

Inorderto provideflexible, efficient support tothe processof creatingaDCS, UniFrame
organizes its knowledgebase according to the concepts of Model-Driven Architecture
proposed by the Object Management Group (2002) and Business Line Architecture
proposed by Enterprise Architecture SIG (2003a). Its UMM provides an underlying
framework for thisorganization. The domain elementsin thetop tier of the architecture
correspond to different business contexts, or lines. A context consists of a class of
related business practice domains (such as, retail grocery, retail hardware, construction
supply, wholesaler), which arelocated in the next tier down. Conceptually, elementson
one level can share an element on another (health care and construction can share
inventory), whichdiffersinhow it performssimilar operationsin different contexts(that
is, the element comprises a set of variants). The various, hierarchically organized
elements that contribute detail to the definition of a business context constitute its
Business Reference Model, discussed in Succeeding with Component-Based Architec-
ture by Enterprise Architecture SIG (2003b). This takes the form of atree, whose root
representsthe context in the architecture under consideration. Business domain experts
perform requirements analysis and model the business contexts for which it is desired
to construct DCSs. The Business Reference Models they derive and place in the
knowledgebase define the space of problems UniFrame can solve.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

UniFrame 75

For each Business Reference Model, software engineers construct design models in
various ways to implement DCSs that satisfy its requirements. A design model is
expressed, frequently in Unified M odeling L anguage (UM L®) (Rumbaugh, Jacobson &
Booch, 1999), intermsof tiered layersof components, each component offering adefined
set of services. Several Business Reference Models can share components. A compo-
nent in onetier can be composed (or use of the services) of components on alower tier.
Thus, a component has two definition forms in the knowledgebase:

i a specification of its abstract properties as atype, asin Table 1, or

i a design specification, following UMM standards, that directly references the
components and refined design specifications of which it uses.

The former is called an abstract component, which the UniFrame System Generation
Process considers to be available with no construction necessary. The second form is
called acompound component. The process will attempt to construct it from its design.
A design specification that defines arealization of a Business Reference Model forms
a Service Reference Model for it. It provides avehicle for realizing the Model-Driven
Architecture’ smapping fromaplatf orm-independent model to aplatform-specific model.
The Service Reference Model s also form part of UniFrame’s knowledgebase.

Inorder to construct DCSsol utionsfor asignificant spaceof problems, the knowledgebase
must contain matching (Business Reference M odel, Service Reference Model) pairsfor
each problem variation anticipated. These can be organized efficiently by structuring
related Business Reference Model sin feature model s according to the optional features
that they exhibit and related Service Reference Models according to variation point
stereotypesthat show which design variantsare avail able. The experts create adomain-
specific language based on the distinguishing features and variation points in the
models. Then, users of the System Generation Process employ the language to specify
their requirements. Thefollowing exampleillustratesthe knowledgebase’ sorganization.

Case Study

Suppose domain experts want to create a knowledgebase that includes the business
context consisting of users who manage documents. The users' contact with the
supporting system is via the use case Manage Documents, which includes Validate
User. The use cases Create Document, Delete Document, List Documents, Store
Document, and Get Document all extend Manage Documents. Thelastinthislistincludes
Lock Document, whereas the othersinclude Unlock Document. From the requirements
these express, the domain expertsidentify three subsystems comprising the system: one
for user validation, one for managing the documents themselves, and one for user
interaction. The experts write a domain model for this system containing these three
subsystems.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

76 Raje, Olson, Bryant, Burt and Auguston

Suppose the experts decide the users may want to choose between two types of
document manager systems: a standard document manager and a deluxe one that
provides extended persistence support. They represent these options in a simplified
feature diagram for the document manager, as shown in Figure 1. Clear small circles
indicate optional features, whereas an arc indicates an exclusive OR choice. In more
general feature diagrams (Griss, 2001), options of a node can be chosen as any
combination of elementsof asubset of the node’ schildren. A featurediagram carriesno
information about how itsalternatives might be associated with elementsin the domain
model of their parent node. It isan efficient mechanismfor representing alternatives; the
domain models are essential for representing the associations among elements in the
models and the constraints on them. The domain model for the standard document
manager consists of only onedomain element, Document Server. Thedomain model for
the del uxe document manager consistsof two domain elements, Deluxe Document Server
and its associated Document Database for persistence. Because there are just two
alternativesinthefeature diagram, therearejust two Business Reference Modelsinthis
example. More generally, there will be as many as there are combinations permitted by
the various feature diagrams present in the knowledgebase.

Software engineers experienced in the domain of the business context (document
management here) develop design models for these two Business Reference Models.
They create a service-oriented architecture of abstract components so that domain
model s map to component-based design models. Figure 2 showsthe Service Reference
Model, Standard Document System, for the Business Reference Model of the Standard
Document Manager for thisexample. The Service Reference Model, Deluxe Document
System, for the Deluxe Document Manager isidentical, with the addition of aDatabase
component associated with the Document Server, where the cardinality allows an
arbitrary, positive number of Database units to be present. The Service Reference
Models include the details defining the associations among the components. These
might be views consisting of UML collaboration diagrams. Thisinformation isused to
determinethe entriesin the UMM abstract component specifications and theinterrela-
tions of the components’ interfaces. The specification for the abstract component,
Validation Server, appeared in Table 1.

Suppose that the software engineers decide that two implementations of the standard
document manager are possible, one in which the components adhere to .NET and the

Figure 1. Feature diagram for the document management system

O OF
DM
Legend:
A, OF: Other Features
DM: Document Manager
O SDM: Standard Document Manager
SDM DDM DDM: Deluxe Document Manager

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

UniFrame 77

Figure 2. Service reference model for the standard document system

E ut Legend:

1 * 1.* UT: Users Terminal
VS: Validation Server
DS. Document Server

L vs 1 ps

other to CORBA. They indicate this choice by a design model, labeled Standard
Document System, augmented by variation point information that specifies the choice
of oneof thesetwo technol ogiesfor theassociationsin Figure 2, suchasin OCL (Warmer
& Kleppe, 2003), as shown:

context Standard Document System
inv: technology = ‘*.NET’ or technology = ‘ CORBA’

Because the system consists of more than two components, the engineers have other
combinationspossible. For example, theUsers Terminal/Validation Server association
may bein .NET technology, and the Document Server may be in CORBA technology,
implying the need for an appropriate bridge.

UniFrame System Generation Process

The essential steps in UniFrame’'s process of constructing a DCS to solve a problem
appear in Table 2. Once the UniFrame knowledgebaseis available, a system devel oper
can pose a statement of requirements for a DCS that solves a problem within its
application domain. Thisanalysistask formsstep (1) in Table 2. For the case study in
the previous section, the statement of requirements might be:

Create a Document Management System having a Standard Document Manager .

In step (2), the term Document Management System of the example requirements
statement identifies the business context, so the stated problem lies within the domain
the knowledgebase represents. The corresponding system model shows there are two
alternatives for the Document Manager, which the feature model displaysin Figure 1.
Thequalifying requirement, Standard, resol vesthisambiguity, which compl etesstep (2).
Theresulting Business Reference Model mapsdirectly inthe knowledgebaseto thetwo
alternative platform-specific Service Reference Modelsfor the entire system shownin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

78 Raje, Olson, Bryant, Burt and Auguston

Table 2. Steps in the UniFrame System Generation Process

Steps Activities
1 State the requirements the DCS must satisfy in the knowledgebase's
terminology.
2 Identify a Business Reference Model that represents these.

3 Identify each Service Reference Model specifying a system of
abstract components that satisfies the Business Reference Model.

4 Obtain concrete implementations of the abstract components.

5 Assemble the concrete components into a DCS according to each
Service Reference Model, so that it meets the specified
reguirements.

6 Test the DCS against the requirements and exit if satisfactory;
otherwise, return to step (1) to modify the requirements.

Figure2,inwhichthecomponentsareeither all .NET or all CORBA. Thiscompletes
step (3).

Continuing to step (4), the System Generation Process collects the UMM type specifi-
cations of all the abstract components involved in each of the two Service Reference
Models and sends them in a query to the UniFrame Resource Discovery Service. This
searchesthe network for implemented componentswhose UMM descriptionssatisfy the
type specifications.

Step (5) employsthedesigninformationinaService Reference M odel to construct aDCS
with the components found. If the appropriate implementations are available on the
network, the request for a Sandard Document Manager in the example will yield two
DCSs, onewith .NET technology and onewith CORBA technology. If no.NET implemen-
tation of a Validation Server isfound, then only the CORBA DCSwill be constructed.

Typically, a developer understands the requirements poorly at the initiation of the
System Generation Process. Therefore, it is imperative to evaluate empirically the
consistency of the characteristics of agenerated DCS with the perceived requirements
and make modifications as necessary. This motivates having step (6) in Table 2. Such
iterative development provides a mechanism for the devel oper to validate the outcome
of the processand determineempirically therangeswithinwhichitsQoSattributesvary.
Thishelpsto assure ahigher quality product. The process allows two levels of testing.
The simplest is black box (or acceptance) testing of the DCS based on only the stated
requirements. The devel oper suppliesatest harnessand plan for this. The other iswhite
box (or integration) testing, again based on the developer’stest plan. In this case, the
design of the DCS serves as a guide for inserting instrumentation code between the
componentsinthe DCS. At runtime, this code reports the behavior of the DCS, giving
thedeveloper aview intoitsinternal operation. The section on the measurement of QoS
discusses a mechanism for inserting this instrumentation easily.

In case there are several Business or Service Reference Models in the knowledgebase
that satisfy the developer’s requirements if step (2) or (3) of the process provides
feedback, allowing the devel oper tointroducerequirementsincrementally so asto reduce

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

UniFrame 79

these alternatives, then the process becomes an efficient way to construct the needed
type of DCS. Thus, the System Generation Process supports the iterative, incremental
devel opment paradigm that modern software engineering practices have found produc-
tive.

UniFrame Resour ce
Discovery Service (URDYS)

Oncecomponentsand their UMM descri ptionshave been deployed on the network, they
areready for discovery inthe Uni Frame System Generation Process. The URD Sexecutes
this process. Siram et al. (2002) discusses its architecture, shown in Figure 3.

The URDS architecture comprises: HeadHunters (HHs), Internet Component Broker
(ICB), Meta-repositories (MRs), and components.

Componentsareimplemented according to some component model, asdescribed earlier,
and registered withthemodel’ sbinding service. For example, the Java-RM | components
are registered with the Naming service provided by the Java-RMI framework. An

Figure 3. UniFrame Resource Discovery System (URDS)

ci(c2 ACLXAC2
] R

|/

iy
S

MR

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

80 Raje, Olson, Bryant, Burt and Auguston

advantage of thisisthat it does not burden the component providers as to deploy their
implementations, they must register them anyway. The HHshavethe soleresponsibility
of performing matchmaking operations between registered components and requested
specifications. Each HH hasan MR, which servesasalocal store. An HH is constantly
discovering newly implemented componentsand storing their UMM specificationsinits
MR. Anytime an HH receives aquery for acomponent type, it first searchesits MR. If
it findsamatch, it returnsthe corresponding component asaresult. If not, it propagates
the query to other HHs in the system.

The ICB isanalogousto the object request broker (ORB) in other architectures. Unlike
the ORB, which only allowsinteroperation between components having heterogeneous
implementations, the nternet component broker all owsinteroperati on between compo-
nents with different component models. As Figure 3 shows, the Internet component
broker consists of domain security manager (DSM), query manager (QM), link manager
(LM), and adapter manager (AM). The DSM s responsible for enforcing a security
structure on the URDS. It authenticates the HHs and all ows them to communicate with
different binding mechanisms(registries). The QM interfaceswiththe System Generation
Process. It receivesaquery consisting of acollection of UMM component types, passes
ittotheHHs, andreturnstheresults. TheLM allowsafederation of URDSsto be created
in order to increase the component search space. The AM locates adapter components,
such as bridges that allow interoperation of different component models, and passes
them to the Glue and Wrapper Generator.

A prototype of URD Shasbeenimplemented using the Java-RM | and .NET technol ogies.
Many experimentshave been performed to measureitsperformance (Siramet al ., 2002).
These demonstrate that URDS scales upward, but the details extend beyond this
chapter’s scope.

Industry and academia have proposed and implemented many distributed resource
discovery and directory services. Examples that Siram et al. (2002) describe include
WAIS, Archie, Gopher, UDDI, CORBA Trader, LDAP, Jini, SLP, Ninf,and NetSolve. Each
hasits own characteristicsand exhibits some similarity with URDS. Thedistinguishing
features of URDS areitstreatment of heterogeneity and its purpose to support creating
heterogeneous integrated systems, not just to discover services.

UniFrame Quality of
Service Framework (UQoS)

Components offer services and indicate and guarantee the quality of their services.
Therefore, it is necessary to facilitate the publication, selection, measurement, and
validation of component and DCS QoS values. The UniFrame Quality of Service
Framework, described by Brahnmath (2002); Sun (2003); and Raje, Bryant, Olson,
Auguston, and Burt (2002), providesnecessary guidelinesfor the component devel opers
and systemintegratorsusing UniFrame. The UQoS consists of three parts: QoS catal og,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

UniFrame 81

composition/decomposition model sfor QoS parameters, and specificationand measure-
ment of QoS. Thereader isreferred to the references abovefor thefirst two becausethe
details are extensive.

To prepare the UMM description of a component to be publicized, the component
devel oper must measureempirically the QoS parametersinthecorresponding UMM type
specification. The QoS catal og providesmodel definitionsand formulasto assist inthis.
Someparametersarestaticin nature (likereliability), while somearedynamic (likeend-
to-end delay). If the parameter is static and characterizes a system of components, then
itsvaluecan bedetermined from thecomponents’ parameter values. Otherwise, itsvalue
must be determined empirically.

Evaluation of QoS Parameters

UniFrame usesthe principlesof event grammarsfor measuring parametersempirically.
Event grammar, as described by Auguston (1995), formsthe basis for system behavior
models. Anevent representsany detectabl e action during execution, such asastatement
execution, expression evaluation, procedure call, and receiving a message. It has a
beginning, end, and duration (atime interval corresponding to the action of interest).
Actions (or events) evolve in time, and system behavior represents the temporal
relationship among actions. Thisimpliesapartial orderingrelationfor events, asLamport
(1978) discussed.

System execution can be model ed asaset of events(event trace) withtwo basicrelations:
partial ordering and inclusion. The event trace actually is a model of the system’s
temporal behavior. In order to specify meaningful system behavior properties, events
must be enriched with attributes. An event may have atype and other attributes, such
as duration, source code related to the event, associated state (that is, variable values
at the event’ s beginning and end), and function name and returned value for function
call events.

A special programminglanguage, FORMAN, for computationsover event tracesgreatly
facilitates measuring parameters empirically. Asdescribed by Fritzson, Auguston, and
Shahmehri (1994) and Auguston (1995), it is based on the notions of the functional
paradigm, event patterns, and aggregate operations over events.

The execution model of acomponent (or asystem of integrated components) is defined
by an event grammar, which is a set of axioms that describes possible patterns of basic
relationsbetween eventsof different typesinaprogram executiontrace. Itisnotintended
tobeused for parsing actual event traces. If an eventiscompound, thegrammar describes
how it splits into other event sequences or sets. For example, the event execute-
assignment-statement contains a sequence of events evaluate-right-hand-part and
execute-destination.

Therule A:: (B C) establishes that, if an event a of the type A occursin the trace of a
program, it is necessary that events b and c of types B and C, also exist, such that the
relationsbIN a, cIN a, b PRECEDESc hold. For exampl e, the event grammar describing

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

82 Raje, Olson, Bryant, Burt and Auguston

the semanticsof animperative programming language may containthefollowingrule(the
names, such as execute-program and ex-stmt in the grammar denote event types):

execute-program :: (ex-stmt *)

This means that each event of the type execute-program contains an ordered (w.r.t.
relation PRECEDES) sequenceof zero or moreeventsof thetypeex-stmt. For thefunction
call event, the event grammar may provide thefollowing rule:

func_call:: (param*) (ex-stmt *)

Thisevent may contain zero or more parameter eval uation eventsfollowed by statement
executions.

Example of Evaluating Turn-Around Time

If the event type component_call corresponds to the whole component call event and
request denotes the event for a single request (the time interval from the request’s
beginning to its completion), then the following FORMAN formula specifies the mea-
surement of the turn-around time:

FOREACH a: session FROM execute_program
SAY (‘Turn-around Time for a sessionis*
SUM[b: request FROM a APPLY b.duration]
/ CARDJ request FROM a])

Similar rules can be specified for any other dynamic QoS parametersor related compu-
tations. Thus, the principlesof event tracesprovideamechanismtovalidateempirically
the QoS values for a component and for an integrated system of components.

| nter oper ability Using the
Glue and Wrapper Generator

For interoperation of heterogeneous distributed components, it is necessary to con-
struct glue and wrapper code to interconnect the components. Because a project
objectiveistoachievehigh quality systems, agoal isto automatically generatetheglue/
wrapper code. In order to achieve this, there should be formal rulesfor interconnecting

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

UniFrame 83

components from a specific application domain as well as integration of multiple
technology domains, that is, component models. UniFrameusesthe Two-L evel Grammar
(TLG, also called W-grammar) formal specification language (Bryant & Lee, 2002) to
specify both types of rules. The TLG formalism is used to specify the components
deployed under UniFrameand al so the generativerul esneeded for system assembly. The
output of the TLG will provide the desired target code (for example, glue and wrappers
for components and necessary infrastructure for the distributed runtime architecture).
The UMM formalization establishes the context for which the generative rules may be
applied. Bryant, Auguston, Raje, Burt, and Olson (2002) providefurther detail sabout the
glue/wrapper codegeneration rules, including adiscussion of how the Quality of Service
validation codeisinserted into the glue code. The general principleisthat for each QoS
parameter to be dynamically verified, the glue code is instrumented according to the
event grammar rulesdescribed earlier.

Future Trends

The concept of Business Reference Models “is meant to provide the foundation for
common understanding of business processes across the Federal government in a
service-oriented manner,” enabling an agency to define an enterprise architecture as
mandated by law, (Enterprise Architecture SIG, 2003). A significant sector of industry is
involved in establishing standards and guidelines on how to enable successful enter-
prise architecture. The component-based architecture of UniFrame’s knowledgebase
closely follows these guidelines, incorporating the concepts of Object Management
Group’s(2002) Model-Driven Architectureasanintegral part. Consequently, UniFrame
isworking toward therealization of an operational framework for enterprisearchitecture
and is a source of feedback into the activities necessary.

Many exi sting component model s provide the necessary mechanismsfor describing the
functional aspects of components but not for the QoS aspects. Standards organizations
haverecently started to addressthisweakness. For example, inthefall of 2000, the OM G
began issuing a number of Requests for Proposals for UML profiles for modeling QoS
in several contexts. UniFrame is addressing some of these QoS issues and is making
efforts (via presentations to different OMG task forces) to ensure that its research is
aligned with emerging industry standards.

The creation of the Business Line and Service-Oriented knowledgebase will largely
continue to be ahuman endeavor aided by CA SE tools because humans determine what
constitutes the problems they must solve. However, the System Generation Process
could beaccomplished mostly automatically for any probleminagiven knowledgebase.
The person who formulates the requirements for the DCS will need to do so in the
knowledgebase’ sterminology. Thedegreetowhichthiscan bemadeto matchthetypical
user’ s terminology remains aresearch area.

Huang (2003) implemented aprototype of the Uni Frame System Generation Processwith
the UniFrameResource Discovery Service. Because of thelabor involvedin constructing
the knowledgebase, it was limited to a small banking case study. Experimental studies

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

84 Raje, Olson, Bryant, Burt and Auguston

proved efficient, user communicationissueswereeasily managed, and QoSvalueswere
calculated. Theautomated creation of bridgesand glue/wrapper codeand using FORMAN
toinsert the codeinto them for the QoS computationsremain to beincorporated into the
implementation.

Conclusion

This chapter has described the UniFrame process for constructing distributed comput-
ing systems and has shown how it facilitates achieving the current goal s of government
and industry in rapidly creating high quality computing systems. UniFrame provides a
framework withinwhich adiversearray of technol ogies can be brought to achieve these
ends. These include software engineering practices, such as rapid, iterative, and
incremental development. Itsbusinessline, service-oriented, model-drivenarchitecture
based on components is a realization of the movement to provide mutability, quick
development, and conservation of resources. A knowledgebase of component-based,
predefined and tested designs for distributed computing systems, event traces for
empirical testing, and quality of servicepredictionand calculationaretoolsit utilizesfor
increasing quality assurance. UniFramedecoupl estherequirementsanalysisand system
assembly activitiesfrom the problem of collecting appropriate components published on
the network. Its novel resource discovery service facilitates the efficient acquisition of
components meeting stated specifications. It provides a mechanism for seamlessly
bridging components of different models, such as RMI and CORBA, to support the
construction of heterogeneous, distributed computing systems having platform-inde-
pendent definitions. The UniFrame project isal soinvestigating techniquesand patterns
related to using quality of service parameters during the design of components and
integrated systems to create high assurance distributed computing systems.

Acknowledgments

Thiswork wassupportedin part by theU.S. Officeof Naval Research, grant NO0014-01-
1-0746.

Refer ences

Auguston, M. (1995). Program behavior model based on event grammar and its
application for debugging automaton. In M. Ducassé (Ed.), Proceedings of the
2nd International Workshop on Automated and Algorithmic Debugging
(AADEBUG' 95) (pp. 277-291), Rennes:. Universitéde Rennes.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

UniFrame 85

Batory, D., & Geraci, B. (1997). Component validation and subjectivity in GenV oca
generators. | EEE Transactions on Software Engineering, 23(2), 67-82.

Beugnard, A., Jezequel, J., Plouzeau, N., & Watkins, D. (1999). Making components
contract aware. | EEE Computer, 32(7), 38-45.

Brahnmath, G. (2002). The UniFrame Quality of Service Framework. Unpublished
master’ s thesis, Indiana University Purdue University, Indianapolis, IN, United
States. Retrieved August 8, 2004 http://www.cs.iupui.edu/uniFrame/

Brown, A. (1999). Building systems from pieces with component-based software engi-
neering. In P. Clements (Ed.), Constructing superior software (Chapter 6). India-
napolis, IN: MacMillan Technical.

Bryant, B. R., Auguston, M., Raje, R. R., Burt, C. C., & Olson, A. M. (2002). Formal
specification of generative component assembly using two-level grammar. Pro-
ceedings of SEKE 2002, 14th International Conference on Software Engineering
and Knowledge Engineering (pp. 209-212). LosAlamitos: | EEE Press.

Bryant, B.R., & Leg, B.-S. (2002). Two-Level grammar asan object-oriented require-
ments specificationlanguage. Proceedingsof HI CSS-35, the35th Hawaii I nterna-
tional Conference on System Sciences (p. 280). Los Alamitos, CA: IEEE Press.
Retrieved August 8, 2004: http://www.hicss.hawaii.edu/HICSS 35/HICSSpapers/
PDFdocuments/STDSLO1.pdf

Crnkovic, I., Schmidt, H., Stafford, J., & Wallnau, K. (Eds.). (2003). Proceedings of the
6th Workshop on Component-Based Software Engineering: Automated Reason-
ing and Prediction. 25" | nternational Conference on Software Engineering (ICSE).
Los Alamitos, CA: |IEEE Press. Retrieved August 8, 2004: http://
www.csse.monash.edu.au/~hws/cgi-bin/CBSE6

Enterprise Architecture SIG, Industrial Advisor Council (IAC). (2003a, March). Business
linearchitectureandintegration. Retrieved August 8, 2004: http://216.219.201.97/
documents_presentations/index.htm

Enterprise Architecture SIG, Industrial Advisor Council. (2003b, March). (IAC). Suc-
ceeding with component-based architecturein e-government. Retrieved August 8,
2004: http://216.219.201.97/documents_presentations/index.htm

Fritzson, P., Auguston, M., & Shahmehri, N. (1994). Using assertionsin declarativeand
operational models for automated debugging. The Journal of Systems and Soft-
ware, 25, 223-239.

Griss,M. L. (2001). Product linearchitectures. InG. T. Heineman, & W. T. Councill (Eds.),
Component-based software engineering: Putting the pieces together (pp. 405-
420). Boston: Addison-Wesley.

Heineman, G. T., & Councill, W. T. (Eds.). (2001). Component-based softwar e engineer -
ing: Putting the pieces together. Boston: Addison-Wesley.

Huang, Z. (2003). The UniFrame system-level generative programming framework.
Unpublished master’ sthesis, IndianaUniversity Purdue University, Indianapolis,
IN, United States. Retrieved August 8, 2004: http://www.cs.iupui.edu/uniFrame

Java Remote Method Invocation — Distributed computing for Java. (2003, October 2).
Retrieved August 8, 2004: http://java.sun.conVmar keting/collateral/javar mi.html

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

86 Raje, Olson, Bryant, Burt and Auguston

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), 558-565.

Lumpe, M., Schneider, J., Nierstrasz, O., & Achermann, F. (1997). Towards a formal
compositionlanguage. InG. T. Leavens& M. Sitamaran (Eds.), Proceedingsof the
1st ESEC Workshop on Foundations of Component-Based Systems (pp. 178-187).
Heidelberg: Springer-Verlag.

Microsoft .Net Framework: Technology overview. (2003, October 2). Retrieved August
8, 2004: http://msdn.microsoft.com/netframewor k/technol ogyinfo/overview/

Object Management Group. Model-Driven Architecture™, thearchitecture of choicefor
achangingworld. (2002, March 12). Retrieved August 8, 2004: http://www.omg.org/
mda

Raje, R. (2000). UMM: Unified Meta-object Model for open distributed systems. Proceed-
ings of the Fourth | EEE International Conference on Algorithmsand Architecture
for Parallel Processing (ICA3PP2000) (pp. 454-465). LosAlamitos, CA: |IEEE Press.

Raje, R., Auguston, M., Bryant, B., Olson, A., & Burt, C. (2001). A unified approach for
integration of distributed heterogeneous software components. Proceedings of
the Monterey Workshop on Engineering Automation for Software Intensive
System Integration, SEAC technical report (pp. 109-119). Monterey, CA: U.S.
Naval Postgraduate School. Retrieved August 8, 2004: http: //www.cs.iupui.edu/
uniFrame/

Raje, R., Bryant, B., Olson, A., Auguston, M., & Burt, C. (2002). A quality-of-service-
based framework for creating distributed heterogeneous software components.
Concurrency and Computation: Practice and Experience, 14, 1009-1034.

Rumbaugh, J., Jacobson, |., & Booch, G. (1999). The Unified Modeling Language
reference manual. Reading, MA: Addison Wesley.

Schmidt, D. (2003, October 2). Overview of CORBA. Retrieved August 8, 2004: http://
www.cs.wustl.edu/~schmidt/corba-overview.html

Siram,N.,Raje, R., Olson, A., Bryant, B., Burt, C., & Auguston, M. (2002). Anarchitecture
for the UniFrame Resource Discovery Service. Proceedings of the 3rd Interna-
tional Workshop of Software Engineering and Middleware: Vol. 2596. Lecture
Notesin Computer Science (pp. 20-35). Heidel berg: Springer-Verlag.

Sun, C. (2003). QoScomposition and decomposition modelsin Uni Frame. Unpublished
master’ s thesis, Indiana University Purdue University, Indianapolis, IN, United
States. Retrieved August 8, 2004: www.cs.iupui.edu/uniFrame

Szyperski, C., Gruntz, D., & Murer, S. (2002). Component software - Beyond object-
oriented programming. (2nd ed.). Boston: Addison-Wesley/ACM Press.

Warmer, J., & Kleppe, A. (2003). The Object Constraint Language. (2nd ed.). Boston:
Addison-Wesley.

Weck, W. (1997, June). Independently extensible component frameworks. In M.
M hlhéuser (Ed.), Proceedings of the 1st | nter national Wor kshop on Component-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

UniFrame 87

Oriented Programming (European Conference on Object-Oriented Program-
ming, Jyvaskyla, Finland), Special 1ssuesin Object-Oriented Programming (pp.
177-188). Heidelberg: Springer-Verlag.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

